
Decision Document

Solid Waste Management Units B-30 Building 101-16 Catchment Pit Hawthorne Army Depot Hawthorne, Nevada

October 1999

Decision Document SWMU B-30

October 1999

RECEIVED

NOV 0 9 1999

ENVIRONMENTAL PROTECTION

The selected remedy is protective of human health and the environment. It has been shown that a complete pathway to human health and the environment does not exist, and there is no potential for an exposure pathway to be completed in the future.

4 Nov 99

U.S. Army

James A. Piner

Lieutenant Colonel, U.S. Army

State of Nevada

Paul Liebendorfer

Chief, Bureau of Federal Facilities

Decision Document

Solid Waste Management Units B-30 Building 101-16 Catchment Pit Hawthorne Army Depot Hawthorne, Nevada

October 1999

Hawthorne Army Depot

Decision Document SWMU B-30, Building 101-16 Catchment Pit Hawthorne Army Depot Hawthorne, Nevada

1.0 Introduction:

This decision document describes the rationale for the proposed closure of SWMU B-30, Building 101-16 catchment pit, at the Hawthorne Army Depot (HWAD), Hawthorne, Nevada. This document was prepared by the U.S. Army Corps of Engineers, Sacramento District, HWAD and the Nevada Department of Environmental Protection (NDEP).

Tetra Tech, Inc. (Tt), was tasked by the US Army Corps of Engineers, Sacramento District (USACE), to perform remedial investigations and ground water monitoring at the Hawthorne Army Depot (HWAD), Hawthorne, Nevada. These tasks were conducted from 1993 through 1997, primarily at solid waste management units (SWMUs) designated by the Army and the Nevada Division of Environmental Protection (NDEP). The NDEP is the lead regulatory agency for environmental issues at HWAD. The purpose of the monitoring was to determine the extent and degree of environmental impacts, if any, associated with activities performed at each SWMU. The primary goal of the investigation was to assess the environmental impacts and to report the findings, present conclusions, and recommend any remediation, if necessary.

With guidance from the NDEP, basewide proposed closure goals (PCGs) for soil were established as acceptable levels so that SWMU closure could be recommended and to assist in directing the investigative efforts toward those SWMUs where the target analytes were of greatest concern (Appendix B). These PCGs were used as action levels throughout this investigation and are used for comparison with the detected analytes in this report.

2.0 Site History

SWMU B30 is in the HWAD's central magazine area, on the northwest side of the 101 Production Area (Figure 1-1). SWMU B30 is an inactive unlined catchment pit located 175 feet northwest of Building 101-16 (Figure 1-2). The catchment pit measures 78 feet by 30 feet and is up to six feet deep. The catchment pit was partially destroyed by channel erosion at the southeast corner.

The USACE, HWAD, and the NDEP agreed to define the boundaries of each SWMU using annotated monuments and survey pins. As part of E&E's 1997 field investigations a survey monument was constructed and surveyed at SWMU B30. A brass survey pin on the monument designates the monument number HWAAP-103-1996 and the SWMU number B30. Three corner pins were set and surveyed to define the SWMU boundary with the monument as the northwestcorner. The location of these corner markers and the SWMU boundaries are shown on Figure 1-2. Survey data is presented in Appendix A.

3.0 Site Conditions

Soils encountered at SWMU B30 include silts; silty sands; and sand, silt, and gravel mixtures. Silts were typically present near the surface of each hand auger location. Below this, the soils graded to coarser-grained materials.

USAEHA estimated the depth to ground water in the vicinity of SWMU B30 at approximately 120 feet below ground surface (bgs) (USAEHA 1988). During Tt's 1997 first and second quarter ground water monitoring (Tt 1997a, 1997b), the depth to ground water was measured at approximately 100 feet bgs at wells IRPMW30 and IRPMW31. These wells are approximately 500 feet downgradient to the northwest of SWMU B30. Based on the designated target analytes, all soil samples collected during this remedial investigation were analyzed for metals, explosives, picric acid, nitrate, and pH. After the investigations the chemicals of concern for the SWMU were explosives.

4.0 Investigations

Site inspections of SWMU B30 were conducted by the USAEHA (1988), Jacobs Engineering (1988), and RAI (1992). During these inspections, red stained soil was noted in and around the catchment pit. No investigation activities were conducted during these inspections, and no samples were collected from the SWMU at that time; however, based on visual evidence it was assumed that the red stained soil was evidence of high levels of TNT contamination. In 1989, WaterWork Corporation conducted a ground water investigation in response to a July 1987 closure order issued for the 101 Production Area by the NDEP (WaterWork 1990). In 1994, sampling activities proposed by E&E for the remedial investigation at SWMU B30 included collecting and analyzing surface, near-surface, and subsurface soil samples, and sampling the ground water by hydropunch (fig 3-1). However, refusal was encountered during the CPT sounding, and ground water was not encountered; therefore, the planned depth of the boring was not completed and a ground water sample was not collected (E&E 1995).

In late 1998 questions begain to arise that the red satined soil may not be explosives contaminated soil; and as in other SWMU's, the high levels of explosives contamination detected by field test methods were not being confirmed by laboratory analysis. The Corps of Engineers took samples of the stained soil in January 1999 from several sites in the 101 area including SWMU B-30. When the samples taken from B-30 did not indicate any explosives contamination, it was determined to sample the SWMU for closure. In March of 1999 The Corps of Engineers took soil samples from SWMU B-30 as a confirmation sampling event (fig. 4).

5.0 Investigation Results

Field sampling was conducted in 1994 and 1997 at SWMU 30. Of six surface and near surface samples taken in 1994; two exhibited high levels of TNT and RDX contamination in the field screening tests. Laboratory results of the same samples did not support any TNT or RDX concentrations above PCG's (appendix C). Sampling in 1999 supported the previous laboratory data by showing no TNT or RDX levels above PCG's. The Corps of Engineers sampling event of January 1999 indicated that the stained soil in B-30 did not indicate any explosive's contamination above PCG's. The red staining was determined to be either bacteria, a photodegradation product of TNT, a dye used in production or natural soil coloration. In March of 1999 the Corps of Engineers collected eight samples from SWMU B-30. Table 1-1 is a summary of the results of the analysis and appendix D lists the complete analysis.

TABLE 1-1

IABLE 1-1	
SWMU B-30	
CONFIRMATION SAMPLE RESULTS	

Sample Number	TNT (ppm)	RDX (ppm)	Sample Number	TNT (ppm)	RDX (ppm)
CS30-BB-01	<0.26	<0.26	CS30-SW-01	<0.26	<0.26
CS30-BB-02	<0.26	<0.26	CS30-SW-02	<0.26	9.05
			CS30-SW-03	<0.26	0.33
CS30-SA-01	<0.26	<0.26	CS30-SW-04	<0.26	0.48
CS30-SA-02	<0.26	<0.26			

The largest detection was a hit of RDX at 9.05 mg/kg, which is below the PCG's for RDX.

6.0 Remediation

No remediation at this SWMU

7.0 Remediation Results

Not Applicable

8.0 Public Involvement:

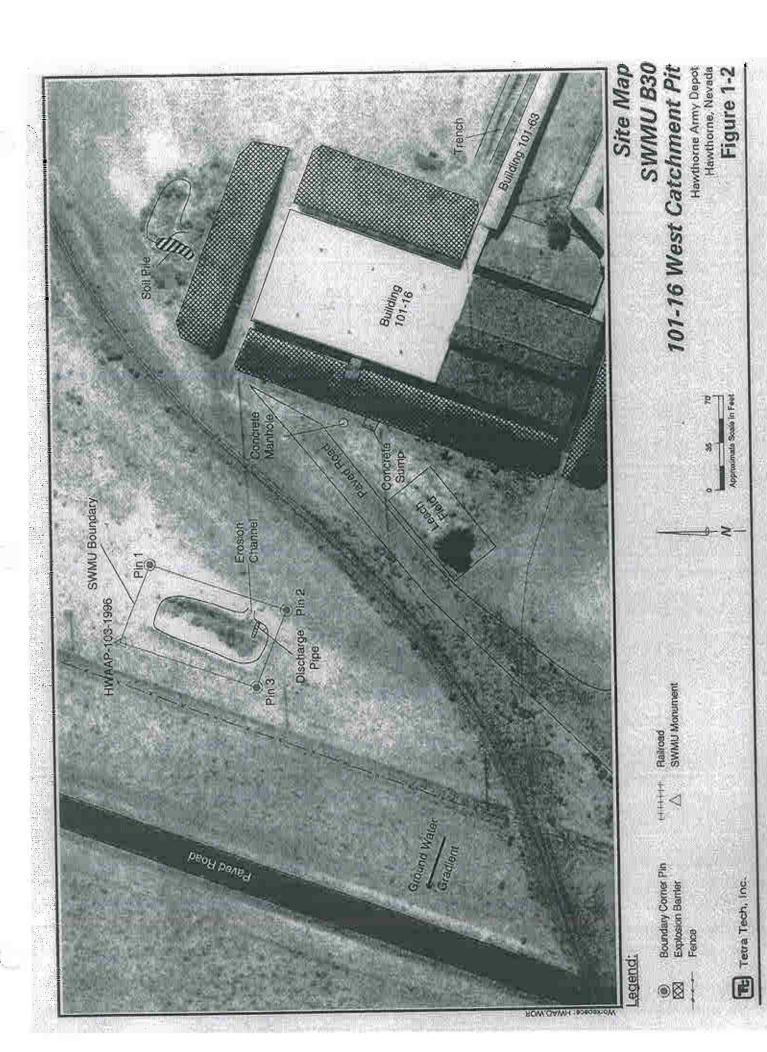
It is the U.S. Department of Defense and Army policy to involve the local community throughout the investigation process at an installation. To initiate this involvement, HWAD has established and maintains a repository library at the local public library. This repository includes final copies of all past studies and other documents regarding environmental issues at HWAD. As future environmental documents are made available to HWAD the repository shall be updated.

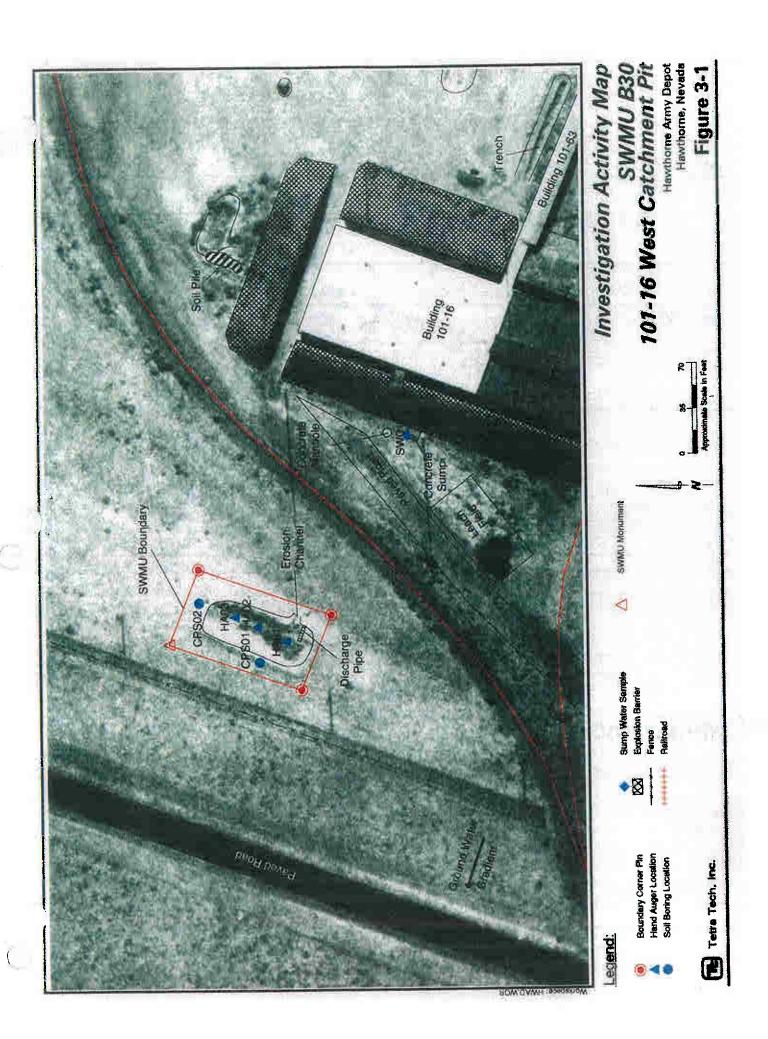
HWAD has solicited community participation in establishment of a restoration and advisory board (RAB). To date there has been insufficient response and HWAD has not

formed a RAB. HWAD has held open houses to inform the public of on going environmental issues. HWAD continues to solicit community involvement, and will establish a RAB should sufficient community interest be obtained.

9.0 Conclusions and Recommendations

Based on investigation results the basin at SWMU B-30 was backfilled with completed compost material, with a 3" cover of clean soil on top. It is recommended that SWMU B-30 be closed with the restriction that no structure be constructed on the area where the basin was backfilled.

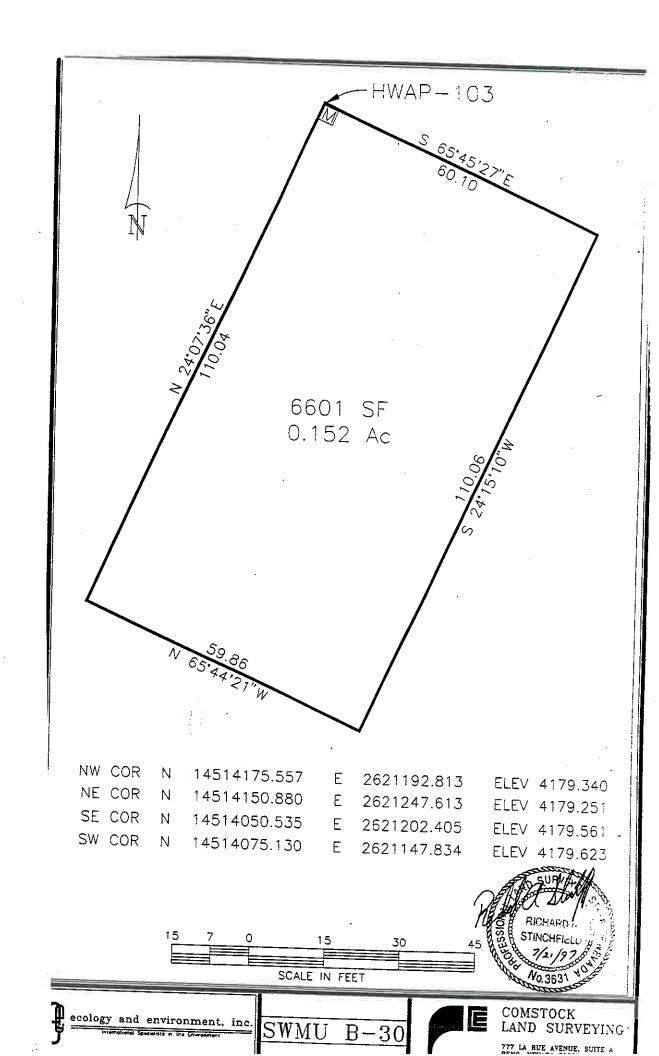

- Ecology and Environment. 1995. RCRA Facility Assessment Report for 24 Solid Waste Management Units, Hawthorne Army Depot, Hawthorne, Nevada. April 1995.
- Jacobs Engineering. 1988. RCRA Facility Assessment, Hawthorne Army Ammunition Plant, TES IV Work Assignment No. 433.
- Millsap, Herman. 1977. Hawthorne Army Depot. Personal communication via telephone with Richard Brunner of Tetra Tech, July 17, 1997.
- RAI. 1992. Site Screening Inspection (SSI) for the Hawthorne Army Ammunition Plant, Hawthorne, Nevada. Prepared for the US Army Corps of Engineers Toxic and Hazardous Materials Agency by Resource Applications, Inc., Falls Church, Virginia. December 1992.
- Tetra Tech. 1997a. Draft Quarterly Ground Water Monitoring Report, First Quarter 1997, Hawthorne Army Depot, Hawthorne, Nevada. April 1997.
- _____. 1997b. Quarterly Ground Water Monitoring Report, Second Quarter 1997, Hawthorne Army Depot, Hawthorne, Nevada. July 1997.
- _____. 1997c. Final Data Package with recommendations for future action, Group B solid waste management units, Hawthorne Army Depot, Hawthorne, Nevada, Volumes 1, 2a, and 2b. January 1997.
- _____. 1997d. Final Technical Memorandum Background Sampling at the Hawthorne Army Depot, Hawthorne, Nevada. March 1997.
- ______. 1997. Final Remedial Investigation Report, Hawthorne Army Depot, Hawthorne, Nevada. December 1997.
- USACE. 1995. Risk Assessment Handbook: Volume I Human Health Assessment (EM 200-1-4). USACE. June 1995.
- ______. 1999. Final Field Sampling Report, West 101 Production Area: Hawthorne Army Depot, Hawthorne, Nevada. April 1999.
- USAEHA. 1988. Final Report. Ground Water Contamination Survey No. 38-26-0850-88. Evaluation of Solid Waste Management Units. HWAAP, Hawthorne, Nevada. May 12 to 19, 1987 and August 1 to 5, 1988.
- USATHAMA. 1977. Installation Assessment of Naval Ammunition Depot, Hawthorne, Nevada. US Army Toxic and Hazardous Materials Agency, Aberdeen Proving Ground, Maryland. Records Evaluation Report No. 114.


- USEPA. 1989. Risk Assessment Guidance for Superfund. Volume I Human Health Evaluation Manual (Part A). December 1989.
- _____. 1996. Region IX Preliminary Remediation Goals. USEPA Region IX. August 1996.
- WaterWork. 1990. Hawthorne Army Ammunition Plant, Area 101 Surface Impoundments, Field and Lab Data and Analysis, Attachment 1-8.

Location Map
SWMU B30
101-16 West Catchment Pit
Hawthorne Army Depot
Hawthorne, Nevada

Figure 1-1

TE Tetra Tech, Inc.



Appendix A

NOTES

- 1. FOR THE LOCATION OF THE FOLLOWING SWMU'S, REFER TO FIGURE 3-6 OF THE "FINAL R.C.R.A. FACILITY INVESTIGATION REPORT OF GROUP "A" SOLID WASTE MANAGEMENT UNITS A-04, B-16, B-21, B-24, B-26, AND H-01".
- 2. THE "HWAD" MONUMENTS AS SHOWN HEREIN AS "M", ARE A 1' X 1' X 2'+ CONCRETE MONUMENT WITH A BRASS CAP STAMPED AS PER SPECIFICATIONS. ALL OF THE OTHER CORNERS ARE MARKED BY A 5/8" RE-BAR WITH A PLASTIC CAP STAMPED "STINCHFIELD PLS 3631" UNLESS NOTED OTHERWISE ON THE MAPS.
- 3. HORIZONTAL DATUM IS BASED ON NAD 83(1994) AND MORE SPECIFICALLY, NGS STATION "W 2". "W 2" IS A FEDERAL BASE NETWORK CONTROL STATION AND IS LOCATED IN THE APPROXIMATE CENTER OF THIS PROJECT.
- 4. VERTICAL DATUM IS BASED ON NAVD 29. NAVD 88 ELEVATIONS HAVE BEEN SCALED AND THEREFORE ARE NOT ACCURATE. VERTICAL CONTROL USING GPS WAS USED TO ESTABLISH THE ELEVATIONS OF THE EXISTING CONTROL POINTS AND THE "HWAD" MONUMENTS. THE VALUE OF NGS STATION "W 2" WAS USED AS A BASIS FOR THE VERTICAL CONTROL.
- 5. COORDINATE VALUES OF EXISTING NGS CONTROL, TRAVERSE POINTS. AND HWAD MONUMENTS ARE STATE PLANE COORDINATES, WEST ZONE.
- THE COMBINED FACTOR WAS CALCULATED USING THE FOLLOWING FIGURES. THE "MAP SCALE" AT POINT "W 2" IS 0.99990022, THE MEAN ELEVATION OF THE TOTAL PROJECT WAS TAKEN AS 4150.00 FEET ABOVE SEA LEVEL AND THE MEAN RADIUS OF THE EARTH WAS TAKEN AS 20,906,000 FEET. THE SEA LEVEL FACTOR WAS CALCULATED AS FOLLOWS: 20,906000/20,906,000 + 4150.00 = 0.999801532. THE COMBINED FACTOR (CF) WAS CALCULATED AS FOLLOWS: 0.99990022 X 0.999801532 = 0.999701772.
- GROUND DISTANCE X CF (0.999801532) = GRID DISTANCE.
- 8. GRID DISTANCE X INVERSE CF (1.00298317) = GROUND DISTANCE.
- COORDINATE VALUES OF ALL OTHER POINTS INCLUDING SWMU CORNERS OTHER THAN "HWAD" MONUMENTS, REFERENCE POINTS, TEST PIT OR HOLE LOCATIONS ETC., WERE CALCULATED USING GROUND DISTANCES AND ARE THEREFORE NOT TRUE STATE PLANE COORDINATES.

10. DISTANCES AS SHOWN ON THESE SWMU'S ARE HORIZONTAL GROUND DISTANCES.

SWMU B30 Survey Data Hawthorne Army Depot Hawthorne, Nevada

SWMU	Point ID	Northing (feet)	Easting (feet)	Elevation
B30	CPS01	1390751.36	496776.21	NE
B30	CPS02	1390796.36	496826.11	NE
B30	HA01	1390730.36	496789.51	, NE
B30	HA02	1390752.36	496802.91	NE
B30	HA03	1390769.36	496812.51	NE
B30	HWAAP-103-1996	1390819.86	496796.90	4179.56
B30	Pin 1	1390795.18	496851.70	4179.62
B30	Pin 2	1390694.84	496806.49	4179.34
B30	Pin 3	1390719.43	496751.92	4179.25

Notes:

NE = Not established

Coordinate data based on electronic map file using the NAD 1927 datum.

Elevation data based on surveyors map using NGVD 1929 datum.

Appendix B

Proposed Closure Goals Hawthorne Army Depot Hawthorne, Nevada

Constituent of Concern	Chemical Classification	Carcinogenic (C) or Non- carcinogenic (NC)	HWAD Proposed Clasure Goals for Soil (mg/kg)	HVIAD Proposed Closure Goal Source
itrate	Anion	NC	128,000	Calculated Subpart S
-Amino-dinitrotoluene ·	Explosive	NC	•	NA°
-Amino-dinitrotoluene	Explosive	NC	. •	NA
,3-Dinitrobenzene	Explosive	NC	.8	Calculated Subpart S
,4-Dinitrotoluene	Explosive	NC	160	Calculated Subpart S
.6-Dinitrotaluene	Explosive	NC	80	Calculated Subpart S
IMX	Explosive	NC	4,000	Calculated Subpart S
litrobenzene	Explosive	NC	40	Calculated Subpart S
litrotaluene (2-, 3-, 4-)	Explosive	NC	800	Calculated Subpart S
RDX	Explosive	NC	64	Calculated Subpart S
Fetryl .	Explosive	NC.	800	Calculated Subpart S
3,5-Trinitropenzane	Explosive	. NC	4	Calculated Subpart S.
2,4,6-Trinitrotoluene	Explosive	С.	233	Calculated Subpart S
Aluminum	Metal	NC	80,000	Calculated Subpart S
Arsenic (cancer endpoint)	Metal	C&NC	30	Background
Barium and compounds	Metal	NC	5,600	Calculated Subpart S
Beryllium and compounds	Metal	С	1	Background
Cadmium and compounds	Metal	NC	40	Calculated Subpart S
Chromium III and compounds	Metal	NC	80,000	Calculated Subpart S
Lead	Metal	NC	1000	₽RG⁴
Mercury and compounds (inorganic)	Metai	NC	24	Calculated Subpart S
Selenium	Metal	NC	400	Calculated Subpart S
Silver and compounds	Metal	NC	400	Calculated Subpart S
Acenaphthene	PAH	NC NC	4,800	Calculated Subpart S
Benzo[a]anthracene	PAH	С	0.96	Calculated Subpart S
Benzo[a]pyrene	PAH	c	0.10	Detection Limit
Benzo[b]fluoranthene	PAH	l c	0.96	Calculated Subpart S
Benzo[k]fluoranthene	PAH	l c	10	Calculated Subpart S
Chrysene	PAH	C	. 96	Calculated Subpart S
Dibenz[ah]anthracene	PAH	С	0.96	Calculated Subpart S
Fluoranthene	PAH	NC	3,200	Calculated Subpart S
Fluorene	PAH	NC	3,200	Calculated Subpart S
	PAH	C		NA
Indeno[1,2,3-cd]pyrene-	PAH	NC	3,200	Calculated Subpart
Naphthalene	PAH	NC	2,400	Calculated Subpart
Pyrene Total Petroleum Hydrocarbons as Diesel	PAH	c	100	NOEP Level Clean-u
(TPH-d) Polychlorinated biphenyls (PCBs)	PCBs	С	25	TSCA
Bis(2-ethylhexyl)phthalate (DEHP)	svoc	С	1,600	Calculated Subpart
Bramoform (tribromomethane)	svoc	С	89	Calculated Subpart

Proposed Closure Goals Hawthorne Army Depot Hawthorne, Nevada

•		Carcinogenic		
		(C) or Non-	HWAD Proposed Clasure Goals for	HWAD Proposed
Constituent of Concern	Chemical Classification	carcinogenic (NC)	Soil (mg/kg)	Closure Goal Source
Butyl benzyl phthalate	svoc	NC ·	16,000	Calculated Subpart S
Dibromochloromethane	svoc	C	83	Calculated Subpart S
Dibutyl-phthalate	SVOC	NC	8,000	Calculated Subpart S
Diethyl phthalate	svoc	ИС	64,000	Calculated Subpart S
Phenanthrene	svoc		•	NÀ
Phenol	svoc	NC	48,000	Calculated Subpart S
Acetone	VOC .	NC	800	Calculated Subpart S
Anthracene	voc	NC	24,000	Calculated Subpart S
Benzene	voc	c	24	Calculated Subpart S
Bis(2-chloroisopropyl)ether	· voc	c	3,200	Calculated Subpart S
Bromomethane	voc	: NC	112	Calculated Subpart S
Carbon tetrachloride	voc	c	5	Calculated Subpart S
Chlorobenzene	voc	NC	1,600	Calculated Subpart S
Chloroform	voc		115	Calculated Subpart S
	voc	c	538	Calculated Subpart S
Chloromethane	VOC	C	800.0	Calculated Subpart S
Dibromomethane	Voc	l NC	7.200	Calculated Subpart S
1,2-Dichlorobenzene	Voc	c	18,300	Calculated Subpart S
1,4-Dichlorobenzene	voc	c	16,000	Calculated Subpart S
Dichlorodifluoromethane .	voc	NC	8,000	Calculated Subpart S
Ethylbenzene	voc	NC	800	Calculated Subpart S
Methylene bromide	voc	c	4.800	Calculated Subpart S
Methylene chloride	voc	1		NA
2-Methylnaphthalene 1,1,2,2-Tetrachloroethane	Voc	c	35	Calculated Subpart S
Tetrachioroethylene (PCE)	voc	C & NC	800	Calculated Subpart S
Toluene	voc	NC	16,000	Calculated Subpart S
1.1.1-Trichioroethane	voc	NC	7,200	Calculated Subpart S
	voc	C&NC	480	Calculated Subpart S
Trichloroethylene (TCE)	voc	NC	24,000	Calculated Subpart S
Trichlorofluoromethane	voc	c	480	Calculated Subpart S
1,2,3-Trichloropropane	voc	c	0.37	Calculated Subpart S
Vinyl chloride	voc	NC NC	160,000	Calculated Subpart S
Xylene Total (m-, o-, p-)		- C -	0.000005	Calculated Subpart S
2,3,7,8-TCOD	Dioxin	<u></u>		

^{*} RCRA 55 FR 30870

Not available

^e Highest background concentration detected in 50 background soil samples

⁴ Smucker, Stanford J. USEPA Rgion IX, Preliminary Remedial Goals, Second Half, Sep. 1995

Method detection limit for Volatile Organic Compounds by EPA Method 8260 or

[·] Semi-Volatile Organic Compounds analyzed by EPA Method 8270

Nevada Division of Environmental Protection

⁹ Cleanup level for PCB spills in accordance with Toxic Substance and Control Act Spill Policy Guidelines 40 CFR 761

Appendix C

Selenium	mg/kg	Ą	<0.6	<0.51	<0.62	<0.62	<0.53	<0.56	₹	<0.5	<1.2	4.3	99.0>	<0.55	<0.67
Геза	mg/kg	Ϋ́	5.5	7	Ω	14	2.6	6.5	12	2.1	41	8.8	9.6	5.7	10
oinea₁A	mg/kg	Ą	4.5	6.0	6.4	20	5.4		5.8	13	8.3	8.8	8.6	36	7
Silver	mg/kg	₹	<1.2	⊽	<1.2	<1.2	<u>^</u>	4.1	⊽	⊽	<1.2	<u>د</u> 1.3	<u>م</u>	1.	<1.3
stoT muimondO	mg/kg	5.8	4.3	က	7.2	8.2	4.1	3.5	6.3	2.5	15	7	Ξ	4.8	41
muimbsO	mg/kg	<0.52	<0.6	<0.51	<0.62	<0.62	<0.53	<0.56	<0.53	<0.5	2.4	<0.64	<0.66	<0.55	<0.67
Beryllium	mg/kg	<0.52	90>	<0.51	<0.62	80	<0.53	0.57	<0.53	<0.5	0.61	0.91	0.68	<0.55	0.96
Barium	mg/kg	œ	82	9 9	240	450	9	140	100	<u>8</u> &	130	220	200	260	230
Гар		O V	000	ASC C	000	000	000	000	000	ASC	ASO CSA CSA	700	000	200	ASC
Depth (feet)		7.								ס גנ					12
Sample Date		2730104	3/20/31	3/20/81	10070	4/2/91	4/2/91	4/2/91	161714	5/40/04	5/12/04	10/01/2	E/04/04	7/24/34	5/25/94
Location ID	!	4	HAU	HAUS				CPSO		HAU					CPS02 CPS02
Sample ID			B30-HA2-1-000	B30-HA1-3-000	B30-HA1-3-005	B30-CPS1-1-011	B30-CPS1-1-018	B30-CPS1-1-020	B30-CPS1-2-022	B30-HA1-1-000	B30-HA1-1-005	B30-HA1-2-000	B30-HA1-2-005	B30-CPS1-2-012	B30-CPS1-2-018 B30-CPS2-2-012

Analyses Detections Minimum Concentration Maximum Concentration	14 14 32 450	14 6 0.57 0.96	2.4 2.4 2.4	2.5 15	4000	13 0.9 36	£ 5 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7 1 2 7	5000
HWAD - PCG HWAD - PCG Hits	2000	- 0	20 0	20	100	100	100	20

Note:

NA = Not analyzed

Zero values listed for maximum and minimum concentrations indicate a nondetect

value for that analyte.

Arsenic Method 7060 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lab	Arsenic
					mg/kg
D20 UA2 4 000	HA01	3/28/91	0.5	ASC	5.9
B30-HA2-1-000	HA03	3/28/91	0.5	ASC	4.5
B30-HA1-3-000 B30-HA1-3-005	HA03	3/28/91	5	ASC	0.9
B30-CPS1-1-011	CPS01	4/2/91	11	ASC	6.4
B30-CPS1-1-018	CPS01	4/2/91	18	ASC	20
B30-CPS1-1-020	CPS01	4/2/91	20	ASC	5.4
B30-CPS1-2-022	CPS02	4/2/91	22	ASC	11
B30-HA1-1-000	HA01	5/12/94	0	ASC	5.8
B30-HA1-1-005	HA01	5/12/94	5	ASC	1.3
B30-HA1-2-000	HA02	5/12/94	0	ASC	8.3
B30-HA1-2-005	HA02	5/12/94	5	ASC	8.8
B30-CPS1-2-012	CPS02	5/24/94	12	ASC	8.6
B30-CPS1-2-018	CPS02	5/24/94	18	ASC	36
B30-CPS2-2-012	CPS02	5/25/94	12	ASC	7
B30 01 02 2 0 12					
Analyses					14
Detections					14
Minimum Concentration					0.9
Maximum Concentration					36
HWAD - PCG					100
HWAD - PCG Hits					0

Lead Method 7421 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lab	Lead
					mg/kg
B30-HA2-1-000 B30-HA1-3-000 B30-HA1-3-005 B30-CPS1-1-011 B30-CPS1-1-020 B30-CPS1-2-022 B30-HA1-1-000 B30-HA1-1-005 B30-HA1-2-000 B30-HA1-2-005 B30-CPS1-2-012	HA01 HA03 HA03 CPS01 CPS01 CPS02 HA01 HA01 HA02 HA02 CPS02	3/28/91 3/28/91 3/28/91 4/2/91 4/2/91 4/2/91 5/12/94 5/12/94 5/12/94 5/24/94	0.5 0.5 5 11 18 20 22 0 5 0 5	ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC	12 5.5 2 8.1 14 2.6 6.5 12 2.1 41 8.8 9.6
B30-CPS1-2-018	CPS02	5/24/94	18	ASC	5.7
B30-CPS2-2-012	CPS02	5/25/94	12	ASC	10
Analyses Detections Minimum Concentration Maximum Concentration					14 14 2 41
HWAD - PCG HWAD - PCG Hits					100 0

Mercury Method 7471 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lab	Mercury
					mg/kg
B30-HA2-1-000 B30-HA1-3-000 B30-HA1-3-005 B30-CPS1-1-011 B30-CPS1-1-020 B30-CPS1-2-022 B30-HA1-1-000 B30-HA1-1-005 B30-HA1-2-000 B30-HA1-2-005	HA01 HA03 HA03 CPS01 CPS01 CPS02 HA01 HA01 HA02 HA02	3/28/91 3/28/91 3/28/91 4/2/91 4/2/91 4/2/91 5/12/94 5/12/94 5/12/94 5/12/94 5/24/94	0.5 0.5 5 11 18 20 22 0 5 0 5	ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC	<0.1 <0.12 <0.12 <0.12 <0.12 <0.11 <0.084 <0.1 0.2 <0.13 <0.13
B30-CPS1-2-012	CPS02 CPS02	5/24/94 5/24/94	12	ASC	<0.13
B30-CPS1-2-018 B30-CPS2-2-012	CPS02	5/25/94	12	ASC	<0.13
B30-0F32-2-012					
Analyses					14
Detections Minimum Concentration Maximum Concentration					1 0.2 0.2
HWAD - PCG HWAD - PCG Hits					· 24 0

Selenium Method 7740 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lab	Selenium
<u> </u>					mg/kg
B30-HA2-1-000	HA01	3/28/91	0.5	ASC	<1
B30-HA1-3-000	HA03	3/28/91	0.5	ASC	<0.6
B30-HA1-3-005	HA03	3/28/91	5	ASC	<0.51
B30-CPS1-1-011	CPS01	4/2/91	11	ASC	<0.62
B30-CPS1-1-018	CPS01	4/2/91	18	ASC	<0.62
B30-CPS1-1-020	CPS01	4/2/91	20	ASC	<0.53
B30-CPS1-2-022	CPS02	4/2/91	22	ASC	<0.56
B30-HA1-1-000	HA01	5/12/94	0	ASC	<1
B30-HA1-1-005	HA01	5/12/94	5	ASC	<0.5
B30-HA1-2-000	HA02	5/12/94	0	ASC	<1.2
B30-HA1-2-005	HA02	5/12/94	5	ASC	<1.3
B30-CPS1-2-012	CPS02	5/24/94	12	ASC	<0.66
B30-CPS1-2-018	CPS02	5/24/94	18	ASC	<0.55
B30-CPS2-2-012	CPS02	5/25/94	12	ASC	<0.67
Analyses					14
Detections					0
Minimum Concentration					0
Maximum Concentration					0
HWAD - PCG					20
HWAD - PCG Hits					0

Note:

Zero values listed for maximum and minimum concentrations indicate a nondetect value for that analyte.

Mitrobenzene	mg/kg	₹	₹	₹	⊽	₹	.⊽	7	; ;	⊽ :	⊽ '	⊽	⊽	⊽	⊽	. ⊽	
ənəznədortiniG-m	mg/kg	₹	₹	⊽	₹	⊽	7	7 1	7	√ '	\	₹	₹	₹	٧		
XMH	mg/kg	٥	⊽	⊽	1.1	2.6	į	7 3	v	₹	₹	₹	⊽	٧	٧	. 1	7
eneulototiiN-4	mg/kg	۲	⊽	₹	⊽	٧	, ,	⊽ :	⊽	⊽	₹	₹	۲	٧	٧	7	7
TNG-8,S-onimA-₽	mg/kg	0.5	₹	₹	7	. 7	7 7	√ '	₹ ;	0.5	₹	0.81	v	₹		, t	7
3-Vitrotoluene	mg/kg	⊽	٧	⊽	V		7 1	₹	₹	₹	⊽	₹	۲	٧	; ;	7	5
S-Nitrotoluene	mg/kg	⊽	₹	⊽	₹	7 7	┌ .	₹	₹	⊽	₹	⊽	⊽	7	; ;	7	⊽
TNG-8,4-onimA-S	mg/kg	0.26	₹	. ₹		7 7	, C.O	₹	⊽	⊽	₹	0.29	₹.	,	,	V	⊽
ənəulototinid-8,2	mg/kg	۲	. △	. 2	7 1	7	⊽	⊽	⊽	⊽	₹	⊽	2	; ;	7	₹	₹
9-4-Dinitrotoluene	mg/kg	7	₹ ₹	; ;	7 :	⊽	⊽	₹	⊽	⊽	₹	٧		7 3	V	₹	⊽
TNT-8,4,2	mg/kg	. 10.0	t 7														- 1
дед		0) () () (ASC.	ASC	ASC	ASC	ASC	ASC	ASC	ASC		200	ASC	ASC	ASC
Depth (feet)	ı				ဂ 🕽	₹ ₹	18	20	22	C	ъ rc	· C) t	o !	-		12
Sample Date		0.00	3/28/91	3/28/91	3/28/91	4/2/91	4/2/91	4/2/91	4/2/91	5/12/94	5/12/04	2/0/2/12	10/7/1/0	46/71/C	5/24/94	5/24/94	5/25/94
Location ID			HA01	HA03	HA03	CPS01	CPS01	CPS01	CPS02	HA01			HAUZ	HA02	CPS02	CPS02	CPS02
Cl elome St			B30-HA2-1-000	B30-HA1-3-000	B30-HA1-3-005	B30-CPS1-1-011	R30-CPS1-1-018	B30 CBS1-1-020	D30-CI 31-1-320	B30-CF31-2-022	B30-HA1-1-000	B30-HA1-1-005	B30-HA1-2-000	B30-HA1-2-005	B30-CPS1-2-012	R30-CPS1-2-018	B30-CPS2-2-012

Analyses Detections Minimum Concentration Maximum Concentration	14 2 0.15 0.24	4000	4000	14 4 0.26 0.71	4000	4000	14 3 0.5 0.81	4000	47 1.1 2.6	4 0 0 0	4000
HWAD - PCG HWAD - PCG Hits	233	2.6	08 0	N N	800	800	岁빙	800	4000	80	6 o

Notes:

NE = Not established
Zero values listed for maximum and minimum concentrations indicate a nondetect value for that analyte.

l∤yti∋T	mg/kg	۲	₹	₹	₹	⊽	⊽	⊽	₹	₹	₹	₹	₹	₹	₹
eneznedotinitT-mya	mg/kg	₹	₽	₹	⊽	⊽	₹	⊽	₹	⊽	⊽	⊽	⊽	₹	₹
ХДЯ	mg/kg	₹	⊽	3.6	1:	0.83	0.47	[:	3.9	1.7	₹	₹	₹	0.9 €	₹
двД	,	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC	ASC
Depth (feet)		0.5	0.5	ಬ	-	18	20	22	0	ည	0	2	7	2	7
Sample Date		3/28/91	3/28/91	3/28/91	4/2/91	4/2/91	4/2/91	4/2/91	5/12/94	5/12/94	5/12/94	5/12/94	5/24/94	5/24/94	5/25/94
Location ID		HA01	HA03	HA03	CPS01	CPS01	CPS01	CPS02	HA01	HA01	HA02	HA02	CPS02	CPS02	CPS02
Sample ID		B30-HA2-1-000	B30-HA1-3-000	B30-HA1-3-005	B30-CPS1-1-011	B30-CPS1-1-018	B30-CPS1-1-020	B30-CPS1-2-022	B30-HA1-1-000	B30-HA1-1-005	B30-HA1-2-000	B30-HA1-2-005	B30-CPS1-2-012	B30-CPS1-2-018	B30-CPS2-2-012

Analyses	14	4	7
Detections	8	0	0
Minimum Concentration	0.47	0	0
Maximum Concentration	3.9	0	0
HWAD - PCG	64	4	800
HWAD - PCG Hits	0	0	0

Notes:

NE = Not established
Zero values listed for maximum and minimum concentrations indicate a nondetec value for that analyte.

Picric Acid Method 8330M (ASC)

* <u></u>					
Sample ID	Location ID	Sample Date	Depth (feet)	Lab	mg/kg Picric Acid
D20 UA2 1 000	HA01	3/28/91	0.5	ASC	<0.25
B30-HA2-1-000	HA03	3/28/91	0.5	ASC	<0.25
B30-HA1-3-000 B30-HA1-3-005	HA03	3/28/91	5	ASC	<0.25
B30-CPS1-1-011	CPS01	4/2/91	11	ASC	<0.25
B30-CPS1-1-018	CPS01	4/2/91	18	ASC	<0.25
B30-CPS1-1-020	CPS01	4/2/91	20	ASC	<0.25
B30-CPS1-2-022	CPS02	4/2/91	22	ASC	<0.25
B30-HA1-1-000	HA01	5/12/94	0	ASC	<0.25
B30-HA1-1-005	HA01	5/12/94	5	ASC	<0.25
B30-HA1-2-000	HA02	5/12/94	0	ASC	<0.25
B30-HA1-2-005	HA02	5/12/94	5	ASC	<0.25
B30-CPS1-2-012	CPS02	5/24/94	12	ASC	<0.25
B30-CPS1-2-018	CPS02	5/24/94	18	ASC	<0.25
B30-CPS2-2-012	CPS02	5/25/94	12	ASC	<0.25
Analyses					14
Detections					0
Minimum Concentration					0
Maximum Concentration					0
HWAD - PCG					NE
HWAD - PCG Hits					NE

Notes:

NE = Not established

Zero values listed for maximum and minimum concentrations indicate a nondetect value for that analyte.

Nitrate Nitrite Method 9200 (ASC)

Sample ID	Location ID	Sample Date	Depth (feet)	Lab	Nitrate-Nitrogen
					mg/kg
B30-HA2-1-000 B30-HA1-3-000 B30-HA1-3-005 B30-CPS1-1-011 B30-CPS1-1-018 B30-CPS1-1-020 B30-CPS1-2-022 B30-HA1-1-000 B30-HA1-1-005 B30-HA1-2-000 B30-HA1-2-005 B30-CPS1-2-012 B30-CPS1-2-018 B30-CPS2-2-012	HA01 HA03 HA03 CPS01 CPS01 CPS02 HA01 HA02 HA02 CPS02 CPS02 CPS02	3/28/91 3/28/91 3/28/91 4/2/91 4/2/91 4/2/91 5/12/94 5/12/94 5/12/94 5/24/94 5/24/94 5/25/94	0.5 0.5 5 11 18 20 22 0 5 0 5 12 18 12	ASC ASC ASC ASC ASC ASC ASC ASC ASC ASC	6.9 4.2 5.2 1.6 2.3 12 2.1 6.7 1.6 7.8 <1.3 2.6 <1.1 3.1
Analyses Detections Minimum Concentration Maximum Concentration HWAD - PCG HWAD - PCG Hits				· · · · · ·	14 12 1.6 12 128000 0

Appendix D

Applied P& Ch Laboratory 13760 Magnelia Ave. Chino CA 91710 Tel: (909) 590-1528 Fax: (909) 890-1688

APCL Analytical Report

•						sis Result 1 CS30-BB-02 CS30-BB	
Component Analyzed	Method	Unit	-	US11-SW-04 99-02440-17		01 CS30-BB-02 8 99-02449-19	
MACOTIN DNA SOLLAMORACHTI	NES			7		L.	
Dilution Factor				1 /	ì	1	1.
4-AMINO-2,5-DINITROTOLUENE	8830	mg/kg	0.2	< 0.20	< 0.21	< 0.21	< 0.21
2-AMINO.4.6-DINITROTOLUENE	8330	mg/kg	0.2	4 a. zij	< 0.21	< 0.31	<0.21
1,3-DINITROBENZENE	8330	mg/kg	0.25	< 0.25	< 0.26	< 0.26	<0.23
2,4-DINITROTOLUENE	8330	mg/kg	0.25	< 0.26	< 0.26	< 0.26	< 0.2€
2,6-DINITROTOLUENE	8330	mg/kg	0.25	< 0.‡€	< 0.2€	< 0.26	< 0.26
HMX	8330	mg/kg	0.28	<0 / c	< 0.28	< 0.26	< 0.26
NITROBENZENE	8330	տ <u>ե</u> /հե	0.25	<0/26	< U.26	< 0.38	< 0.36
3-NITROTOLUENE	8330	mg/kg	0.25	< q.26	< 0.23	< 0.28	< 0.2₫
RDX	8330	mg/kg	0.25	< 9.36	< 0.28	< 0.26	< 0.25
TETRYL	8330	mg/kg		<0.26	< 0.36	< 0.25	< 0.25
1,3,5-TRINITROBENZENE	8330	mg/kg		₫0.26	< 0.26	< 0-26	< 6.26
2,4,6-TRINITROTOLUENE	8330	rig/kg		₹ 0.26	< 0.26	< 0.26	< 0.26
2/4-NITROTOLUENE	B330	mg/kg		k 0.26	< 0.28	< 0.26	₹ 0.26
						Analysis Resul	
Component Analysed	Met	thod	Unie	PQL	G\$30-\$A-01 99-02449-21		39-02449-23
MOISTURE	ASTM	-D2216	%Moist	urc 0.5	2.5	2.3	3.1
NITROAROMATICS AND NITROAN	eann						
Dilution Factor					1	1	1
4-AMINO-2,6-DINITROTOLUENE	; 93	330	mg/k	g 0.2	< 0.21	< 0.30	< 0.21
" AND THE A A STREET AND A TOTAL TOT	1			_			
S-YWINO-4'6-DIVITIO TOPOWAY	: 83	339	nig/k	_	<0.21	< 0.20	< 0.23
2-AMINO-4,6-DINITROTOLUENF 1,3 DINITROBENZENE		339 330	nig/k mg/k	g 0.2			< 0.21 < 0.26
2-AMINO-4,6-DIRITROTOLUMA 1,3 DINITROBENZENE 2,4-DINITROTOLUENE	83			g 0.2 k 0.25	<0.21	< 0.20	< 0.23
1,3 DINITROBENZENE 2,4-DINITROTOLUENE	83 83	330	mg/k	g 0.2 g 0.25 g 6.25	< 0.21 < 0.26	< 0.20 < 0.26	< 0.21 < 0.26
1,3 DINITROBENZENE	83 83	330 330	ing/k ing/k	g 0.2 g 0.25 g 0.25 g 0.25	< 0.21 < 0.26 < 0.26	< 0.20 < 0.26 < 0.26	< 0.25 < 0.26 < 0.28
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX	83 83 83	330 3 30 3 3 0	ing/k ing/k mg/k	g 0.2 g 0.25 g 0.25 g 0.25 g 0.25	< 0.21 < 0.26 < 0.26 < 0.26	< 0.20 < 0.26 < 0.36 < 0.28	< 0.21 < 0.26 < 0.26 < 0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE	83 83 83 83	330 330 330 330	mg/k mg/k mg/k	6 0.2 8 0.25 9 0.25 19 0.25 10 0.25 10 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36	< 0.20 < 0.26 < 0.26 < 0.26 < 0.28	<0.21 <0.25 <0.26 <0.26 <0.28
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE	83 83 83 83 83	330 330 330 330 336 330	mg/k mg/k mg/k mg/k mg/k	g 0.2 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36 < 0.36	< 0.20 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	<0.23 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX	83 83 83 83 83 83	330 330 330 330 330 330 330	mg/k mg/k mg/k mg/k mg/k mg/k	g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36 < 0.26 < 0.26	< 0.20 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX TETRYL	83 83 83 83 83 83 83	330 330 330 330 336 330 330	mg/k mg/k mg/k mg/k mg/k mg/k	g 0.2 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25 g 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36 < 0.26 < 0.26 < 0.26 < 0.26	< 0.20 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX TETRYL 1,3,5-TRINITROBENZENE	83 83 83 83 83 83 83 83 83 83 83	330 330 330 330 336 330 330 330	mg/k mg/k mg/k mg/k mg/k mg/k mg/k mg/k	8 0.25 cg 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	<0.20 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX TETRYL	83 83 83 83 83 83 83 83 85 85	330 330 330 330 336 330 330	mg/k mg/k mg/k mg/k mg/k mg/k	8 0.25 8 0.25	< 0.21 < 0.26 < 0.26 < 0.26 < 0.36 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26 < 0.26	<0.20 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX TETRYL 1,3,5-TRINITROBENZENE 2,4,6-TRINITROTOLUENE	83 83 83 83 83 83 83 83 85 85	330 330 330 330 336 330 330 330 330	mg/k mg/k mg/k mg/k mg/k mg/k mg/k mg/k	8 0.25 8 0.25	< 0.21 < 0.26 < 0.26	<0.20 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.28 <0.28	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26
1,3 DINITROBENZENE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE HMX NITROBENZENE 3-NITROTOLUENE RDX TETRYL 1,3,5-TRINITROBENZENE 2,4,6-TRINITROTOLUENE	83 83 83 83 83 83 83 85 85 85	330 330 330 330 336 330 330 330 330	mg/k mg/k mg/k mg/k mg/k mg/k mg/k mg/k	g 0.2 g 0.25 g 0.25	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.28 <0.28	<0.20 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.28 <0.28 <0.28	<0.21 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26 <0.26

Applied P & Ch Laboratory 19760 Magnolia Ave. Chino CA 91710 Tal: (909) 590-1828 Fax: (909) 590-1898

APCL Analytical Report

Component Analyzed	Method	Unit	PQL	CS30-SW-03 99-02449-24	Analysis Result CS36-\$W-03 99-02449-25	OS30-SW-04 99-02449-26
nitroaromatics and nitroawi	NES (a)					
Dilution Factor				1	1	1
4-AMINO-2,6-DINITROTOLUENE	0888	mg/kg	0.2	< 6.21	< 0.21	< 0.21
2-AMINO-4,6-DINITROTOLUENE	8330	mg/kg	0.2	€ 6.21	< 0.21	< 0.21
1,3-DINITROBENZENE	8330	mg/kg	0.25	< 0.27	< 0.26	< 0.26
2,4-DINITROTOLUENE	6330	mg/kg	0.25	< 0.27	< 0.28	< 0.26
2.6-DINITROTOLUENE	8330	mg/kg	0.25	< 0.27	< 0.26	< 0.26
HMX	8330	mg/kg	0.25	0.32	< 0.28	0.26
NITROBENZENE	8330	mg/xg	0.25	< 0.27	< 0.28	< 0.26
3-NITROTOLUENE	8330	mg/kg	0.25	< 0.27	< 0.26	< 0.26
RDX	8330	nig/kg	0.25	9.05	0.33	0.48
TETRYL	8330	mg/kg	0.25	< 0.27	< 0.26	< 0.36
1,3,5-TRINITROBENZENE	8330	mg/kg	0.35	< 0.97	₹ 0.2€	< 0.2€
2,4,6-TRINITROTOLUENE	8330	mg/kg	0.25	< 0.27	< 0.2₺	< 0.26
2/4-NITROTOLUENE	8330	mg/kg	0.25	< 6.27	< 0.26	< 0.26

Component Analyzed .	Method	Unit	PQL	CS30-SW-05 99-02449-27	Analysis Resul SS22-99-01 99-02449-28	t SS22-9 9-1 /2 99-02449 39
MOISTURE	AS'TM-D2216	%Moisture	0.5	2.6	1.1	1/1
NITROAROMATICS AND NITROAMI	NES					/.
Dilution Factor				1	1	/ 1
4-AMINO-2,6-DINITROTOLUENE	8330	mg/kg	0.2	< 0.21	< 0.20	/<0.20
2-AMINO-4,6-DINITROTOLUENE	8330	mg/kg	0.2	< 0,21	< 0.30	/ <0.20
1.3-DINITROBENZENE	8330	mg/kg	0.25	< 0.26	< 0.25	/ <0.28
2,4-DINITROTOLUENE	8330	mg/kg	0.25	< 0.26	<0.25	/ < 0.25
2,6-DINITROTOLUENE	8330	mg/kg	0.25	< 9.26	<0.25 /	< 0.35
HMX	8330	mg/kg	0.25	< 0.26	< 0.25	< 0.25
NITROBENZENE	8330	mg/kg	0.25	< 0.26	< 0.25	< 0.25
3-NITROTOLUENE	8330	mg/kg	0.25	< 0.26	< 0.25/	< 0.25
RDX	8330	mg/kg	0.25	< 0.26	< 0.26	< 0.25
TETRYL	8330	mg/kg	0.25	< 0.26	<u 26<="" td=""><td>< 0.25</td></u>	< 0.25
1,3,5-TRINITROBENZENE	8330	mg/kg	0.25	< 0.26	< 9.25	< 0.25
1'9'9-1 ICINI 1 ICADEMADINE	8330	rng/kg	0.25	< 0.26	0.25	< 0.25
2,4,6 TRINITROTOLUENE 2/4-NITROTOLUENE	8330	mg/kg	0.25	€ 0.26	€ D.25	< 0.25

PQL: Practical Quantitation Limit.

MDL: Method Detection Limit.

ORDL: Contract Required Desection Limit

"": Analysis is not required.

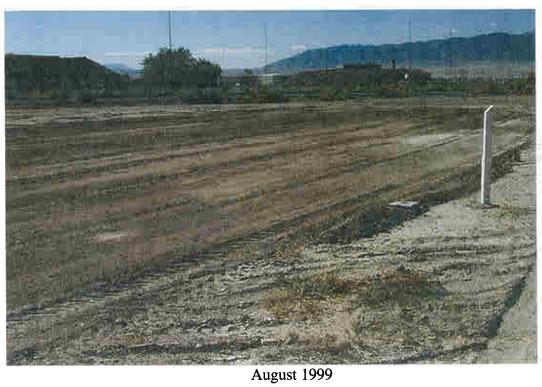
J: Reported between PQL and MDL.

Listed Dilution Factors (DF) are relative to the method default DF. All unlisted DFs are 1.0

(a) Positive results had been confirmed by second column.

Domine Lau Laboratory Director

Applied P & Ch Laboratory


N.D.: Not Detected or less than the practical quantitation limit-

All results are reported on dry basis for soil samples.

Appendix E

B30, View across pit. December 1997

